5 research outputs found

    Heart Rate Variability as a Biomarker for Predicting Stroke, Post-stroke Complications and Functionality

    Full text link
    © The Author(s) 2018. Background: Heart rate variability (HRV) is a non-invasive measure of the function of the autonomic nervous system, and its dynamic nature may provide a means through which stroke and its associated complications may be predicted, monitored, and managed. Objective: The objective of this review is to identify and provide a critique on the most recent uses of HRV in stroke diagnosis/management and highlight areas that warrant further research. Methods: The MEDLINE, CINAHL, and OVID MEDLINE databases were canvassed using a systematic search strategy, for articles investigating the use of HRV in stroke diagnosis and management. Initial paper selections were based on title alone, and final paper inclusion was informed by a full-text critical appraisal. Results: The systematic search returned 98 records, of which 51 were unique. Following screening, 22 records were included in the final systematic review. The included papers provided some information regarding predicting incident stroke, which largely seems to be best predicted by time- and frequency-domain HRV parameters. Furthermore, post-stroke complications and functionality are similarly predicted by time- and frequency-domain parameters, as well as non-linear parameters in some instances. Conclusions: Current research provides good evidence that HRV parameters may have utility as a biomarker for stroke and for post-stroke complications and/or functionality. Future research would benefit from the integration of non-linear, and novel parameters, the hybridisation of HRV parameters, and the expansion of the utilisation of predictive regression and hazard modelling

    Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases

    Full text link
    © The Author(s) 2018. Cardiovascular disease (CVD) is the leading cause of death in the world and our approach to the control and management of CVD mortality is limited. Nattokinase (NK), the most active ingredient of natto, possesses a variety of favourable cardiovascular effects and the consumption of Natto has been linked to a reduction in CVD mortality. Recent research has demonstrated that NK has potent fibrinolytic activity, antihypertensive, anti-atherosclerotic, and lipid-lowering, antiplatelet, and neuroprotective effects. This review covers the major pharmacologic effects of NK with a focus on its clinical relevance to CVD. It outlines the advantages of NK and the outstanding issues pertaining to NK pharmacokinetics. Available evidence suggests that NK is a unique natural compound that possesses several key cardiovascular beneficial effects for patients with CVD and is therefore an ideal drug candidate for the prevention and treatment of CVD. Nattokinase is a promising alternative in the management of CVD

    Recent advances in molecular biomarkers for diabetes mellitus: a systematic review

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. Context: Diabetes is a growing global metabolic epidemic. Current research is focussing on exploring how the biological processes and clinical outcomes of diabetes are related and developing novel biomarkers to measure these relationships, as this can subsequently improve diagnostic, therapeutic and management capacity. Objective: The objective of this study is to identify the most recent advances in molecular biomarkers of diabetes and directions that warrant further research. Methods: Using a systematic search strategy, the MEDLINE, CINAHL and OVID MEDLINE databases were canvassed for articles that investigated molecular biomarkers for diabetes. Initial selections were made based on article title, whilst final inclusion was informed by a critical appraisal of the full text of each article. Results: The systematic search returned 246 records, of which 113 were unique. Following screening, 29 records were included in the final review. Three main research strategies (the development of novel technologies, broad biomarker panels, and targeted approaches) identified a number of potential biomarkers for diabetes including miR-126, C-reactive protein, 2-aminoadipic acid and betatrophin. Conclusion: The most promising research avenue identified is the detection and quantification of micro RNA. Further, the utilisation of functionalised electrodes as a means to detect biomarker compounds also warrants attention
    corecore